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A numerical method for computation of the steady flow about a blunt body is presented. 
A difference scheme is applied on a domain which is such that the whole subsonic part is 
included. It is solved as a boundary-value problem with extrapolation conditions at the 
outflow boundary in the supersonic domain. The resulting system of algebraic equations 
is solved by a procedure of Newton. In the remaining supersonic domain a marching 
procedure is used. 

1. INTRODUCTION 

The problem of determining the bow shock shape and the gas flow around a blunt 
body traveling at supersonic speed has attained considerable interest for many years, 
as it has important applications, for example, in connection with supersonic flight and 
entry from space into the atmosphere. For this reason many computational methods 
have been developed for this problem. One possibility is to solve the inverse problem, 
where, from a prescribed shock and conditions across it one computes the state of the 
flow behind it and the body shape, e.g., as in the work of Lomax and lnouye [6]. 
Another commonly used method is to solve the time-dependent equations governing 
unsteady flow, obtaining the results for the steady flow asymptotically in time. Such 
a technique is used by Sutton [lo] for computing the fully coupled radiating flow 
field around a blunt body. The so-called finite volume technique with a split explicit 
time differencing is used by Rizzi and lnouye [8] to compute both axisymmetric and 
fully three-dimensional blunt body flow. 

A drawback with the time-dependent techniques is that they are often very time- 
consuming since the convergence to the steade state can be slow, and it can also be 
difficult to determine whether the steady state has been reached or not. We believe 
that a more efficient way is to solve the equations for steady flow directly as a bound- 
ary-value problem on a domain which contains the whole subsonic part of the flow. 
In the supersonic part of the domain we use a marching procedure in the main flow 
direction; see Fig. 1. 

The system of equations arising from the difference approximation to the boundary- 
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FIG. 1. Newton procedure in region A, marching procedure in region B. 

value problem is solved by using Newton’s method, and therefore we will refer to the 
solution method for this part as the Newton procedure. 

The computations are made in a body-oriented coordinate system with the shock 
at a fixed coordinate value. The shock distance 6 is treated in the same way as the 
other unknowns, which means that the variation of 6 is determined by the Newton 
procedure in region A. The differential equations and coordinate transformations are 
described in Section 2. 

The equations are approximated by second-order accurate centered difference 
approximations in the interior of the region A. This region contains part of the super- 
sonic region, but the same difference method is used all over. This is a technique 
similar to that used by Blomster and Skiillermo [2]. At the shock values are given by 
the Rankine-Hugoniot relations and at the body the rigid-wall condition is applied. 
At the symmetry line we use the symmetry conditions, and at the outflow boundary 
of A extrapolation is used. 

Gaussian elimination is used to solve the system of linear equations arising at each 
step of the iterative procedure. The complete treatment of region A is described in 
Section 3. 

In region B, a dissipative version of the leap-frog scheme is used and the initial 
data are taken from the Newton calculation at the boundary between the regions. A 
variable step size is used, to allow for larger steps further downstream. The complete 
algorithm for region B is presented in Section 4. 

The results of the numerical computation for different Mach numbers between 2 
and 40 are presented in Section 5. 

The method is applied to the perfect gas case, but the generalization is straight- 
forward for more general cases, where radiative heating is also included. The efficiency 
of the method as indicated by our experiments is expected to be more pronounced 
for more general and more time-consuming cases. 

The method is designed for fairly high Mach numbers such that the subsonic domain 
is finite. Furthermore, if the subsonic domain is very large such that the angle between 
the shock and the body becomes large, a different coordinate system should be used. 
Rizzi [9] has considered that problem. 
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2. THE DIFFERENTIAL EQUATIONS 

We will consider inviscid, axisymmetric flow, which is hornentropic in the domain 
of computation. The flow is governed by the equations of conservation of mass, 
momentum, and energy for unsteady flow. These conservation equations expressed in 
vector notation are 

mass: 

momentum: 

T+ v.vv- vp/p =o, 

energy: 

p;+pVd’h-g- v . vp 

(2.1) 

Q-4 

(2.3) 

where V is the flow velocity vector, p the density, p the pressure, and h the enthalphy, 
i.e., energy per unit mass. 

We are going to use the same formulation of the equations and the same coordinate 
systems that are used by Sutton [lo], where the shock is assumed to be a smooth 
surface. The coordinate system is shown in Fig. 2. 

The transformation of Eqs. (2.1)-(2.3) to this coordinate system is carried out in 
POI. 

FIG. 2. The body-oriented coordinate system. s, Coordinate along body surface; y, coordinate 
perpendicular to body surface; 4, angle measured around symmetry axis (not shown); 8, angle 
between tangent to body and symmetry axis; 0 + 8, angle between tangent to shock wave and 
symmetry axis; R, nose radius of body; u, flow velocity parallel to body; u, flow velocity perpendicular 
to body. 
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ln order to fix the location of the shock wave in the coordinate system we introduce 
the shock stand-off distance 6 = S(s, t) and make the coordinate transformation 

y’ = y/s. (2.4) 

We now have a rectangular coordinate system with y’ = 0 at the body and y’ = 1 at 
the shock. We will hereafter use the unprimed variable y to simplify writing. s is the 
distance from the symmetry axis along the body surface. With these transformations 
and assuming axisymmetric flow so that all derivatives and velocities in the &direction 
are zero the equations become 

mass: 

it = -(4, + w/h - Buy + pus/h + pug/6 + C), (2.5) 

s-momentum: 

ut = 44 + uu,/h - Bpylp2 + p&X) + D), (2.6) 

y-momentum: 

vt = -(&4 + u&/h + A//(&) - E), (2.7) 

energy: 

where 

4 = -(Ah, + h/X - P~/P - Ap,/p - up,l(pW, (2.8) 

Here 

A = v/S - y&/S - 24~~ tan p/(&I), 

B = PYP tan P/W), 

C = pu sin O/r + &K/X + cos O/r), 

D = Km/x, 

E = Ku2/h. 

.c 

s 
r = y cos 8 + sin e ds 

0 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

is the distance from the symmetry axis and 

K,-L!! 
c/s 

(K = I for a sphere), 

X = 1 + K Sy, 

,=l+K6 

(2.15) 

(2.16) 

(2.17) 

are variables from the coordinate transformation. 



STEADY FLOW ABOUT BLUNT BODIES 331 

All variables appearing in the equations are dimensionless quantities. The relation 
to dimensional quantities are given by 

s = d/R’, 

y = f/R’, 

r = r’/R’, 

p = p’/(pX2), 
h = h I/ v:” ) 

p = P’lPk 2 

t = t’V;./R’, 

where the subscript co denotes free stream values and the prime denotes dimensional 
quantities. 

The pressure p is introduced as an independent variable instead of p by using the 
relation 

p = whl(y - 11, (2.18) 

where y is the ratio of specific heats for the gas. The mass equation then becomes 

Pt = 44, + m/X + 4pusl~ - Bu, + PV,/~ + Cl>, (2.19) 
where 

a = (PYIP)l’z (2.20) 

is the local speed of sound. 
We want the steady-state solution, i.e., a solution to Eqs. (2.6)-(2.8), (2.19) with all 

time derivatives equal to zero. Writing the dependent variables as a vector 

w =(uuhp) (2.21) 

the equations become 

where 
L(s, Y, 4 ws + M(s, Y, w> w, + f(s, Y, w) = 0, 

u/A 0 0 1 l(P4 

L= t 
0 

u/x 
0 0 

o 0 u/h - Ul(PN 
a2p/X 0 0 U/X 

1 

0 -B/p2 
0 l/S 
A --Alp 

-a2B a2p/6 0 A 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

D 

f= -oE 

ii a% 
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Boundary Conditions 

We want to solve Eqs. (2.22) in a region between the body and the shock. Then we 
have physically very natural boundary conditions at the shock and the body. At the 
shock the values of the variables behind the shock can be calculated from the free 
stream conditions using the Rankine-Hugoniot relations for a steady shock, when 
the shock shape is known, i.e., 0 and /I are known. The Rankine-Hugoniot relations 
are 

24 = V, 
( 
cos(8 + /3) cos /I + sin(8 + /3) sin p 2’mmE Jr : - * ), 

u = V, 
( 
cos(0 + /3) sin p - sin(fI + 13) cos p 2’mmz z T - ’ j, 

p = pm + 2p,Vz2 sin2(0 + p) ’ y ~‘~z’ , 
(2.26) 

h = YP 
2/mm2 + y - 1 

P& - I)(Y + 1) ’ 
where 

mm = M, sin(8 + /3) 

denotes the free stream component perpendicular to the shock. The connections 
between 6 and p is defined by 

2 = (1 + K-6) tg p. (2.27) 

The only boundary condition at the body is 

D(S, 0) = 0 

and at the symmetry line, the conditions are 

(2.28) 

40, Y> = 0, 

~s(O, Y> = 0, 

MO, Y) = 0, 

Ps(O, Y) = 03 
6,(O) = 0. 

(2.29) 

The subsonic flow in the stagnation region is followed by a supersonic region 
further downstream along the body. If the region A extends sufficiently far downstream 
in the supersonic region, system (2.22) is hyperbolic at the line s = sb with the S- 
coordinate being time-like. Therefore no boundary condition shall be given there. 

For each given s there are five boundary conditions (2.26) and (2.28), but only four 
differential equations. However, this is no contradiction, since the unknown function 
6(s) occurs in the coefficients of (2.22). (Also /I is unknown, but is related to S by 
(2.27)) 
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3. THE SOLUTION METHOD FOR REGION A 

We solve Eqs. (2.22) using finite-difference approximations in region A, which 
extends sufficiently far into the supersonic region. Therefore we choose a value sb 
such that u is greater then the speed of sound, and solve the problem on the rectangle 
o~s~sb,o~Y, < 1. For most problems there is no difficulty in choosing a proper 
value of sb, but we have to check the supersonic condition when the solution is found. 

We define a mesh in the rectangle such that the meshpoints are (s, , yJ, n = O,..., N, 
j = o,..., J, where s, = --ds/2 + n&s, yj = joy, and ds = sJ(N - O-S), dy = l/J. 
For functionsf(s, y) of s and yrfnj denotesf(s, , y,). 

We get as unknowns the values of U, v, h, p at each mesh point and the value of 6 
at s, , n = O,..., N, thus making a total of 4(N + l)(J + 1) + N + 1 unknowns. 

The complete difference scheme in region A is defined as follows: 

1. Central differences in the interior, 

L, 
M’Tl+1.j - '<n-l,j + M,~ wn.li12~ywn.+1 + fnj = 0. 

2As 

2. Six-point scheme near the body for the u-, h-, and p-equations and at the shock 
for the p-equation 

enk !!h8L2~~!+& + fink wnk+112 - wnk--1/2 + fnk = o, 

AY 

where the second subscript k = Q, N - + denotes average values between adjacent 
points in the y-direction. The caret above L, M, f indicates that the proper rows are 
deleted. 

3. Boundary values w,,~ at the shock from (2.26) tan /3 from central difference 
approximation of 

$ = (1 + K6) tan /3. 

4. Boundary condition at the body, 

V - 0. no - 

5. Conditions at the symmetry line, 

Ulj + uoj = 0, 
Ulj - VOj = 0, 

hlj - hoj = 0, 

Plj - PO? = 07 
6, - 6, = 0. 
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6. Extrapolation at the outflow boundary s = sb , 

wNj = 2wN-,,j - wN-2.i, 

6, = 26,-, - a,-, , 

tan PN = 2tan PNel - tanpN-2 . 

These approximations are second-order accurate except for the linear extrapola- 
tion at the right boundary, but since no boundary conditions to the differential 
equations are approximated there we should still be able to get second-order accuracy 
in the interior. 

Due to the extrapolation of 6, we also have accuracy one order lower in the coeffi- 
cients one step from the boundary at s = so. Since this occurs at this coordinate line 
only, the overall accuracy should not be affected. 

We would like to emphasize here the importance of choosing the right boundary 
conditions at y = 0 and y = 1. The following table shows the properties of the 
characteristics (eigenvalues are given in Section 4) 

Elliptic part Hyperbolic part 

y = 0 parallel to body: 2 parallel to body: 2 
pointing out of the domain: 1 
pointing into the domain: 1 

y = 1 pointing into the domain: 2 pointing into the domain: 3 
pointing out of the domain: 1 

Since part of the hyperbolic domain is included in region A, it is essential that the 
numerical boundary conditions be properly posed for the difference scheme considered 
as a marching procedure. Therefore three “extra” boundary conditions are given at 
y = 0, and one “extra” boundary condition at y == 1 as specified in part 2 above. If 
the six-point scheme (which is the type of extra condition used in our case) were used 
for all four equation at y = 0, this would correspond to an underspecification at 
y = 0, and to an overspecification at y = 1. Numerical experiments confirm this 
analysis; oscillations occur in the hyperbolic domain, and they are more severe if 
region A is extended farther downstream from the sonic line. 

It is possible to make an independent computation of the solution at the symmetry 
line if an estimate of the tangential derivative iu/is is available. This solution could 
then be used as boundary data for the main calculation. Gustafsson and Kreiss [5] 
have shown that for time-dependent problems such an overspecifying of an artificial 
boundary leads to slow convergence to the steady state and can also cause oscillations 
if the given values are not very near the true solution. We have experienced this latter 
effect also for the steady-state problem when making some test calculations. 

We will now describe how the solution to the difference approximation is obtained. 
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With all unknowns ordered into one vector 

w = (w;*w;* ... w~1w;2 *.* wh2 ... wg, ... S,)‘, 

the equations, which are ordered in a similar manner, give rise to a nonlinear system 
of equations in the form 

H(W)-G(W). w-kF(W)=O. (3.1) 

Here the equations containing difference quotients have been multiplied by rly in 
order to get elements in G of the same order of magnitude. 

This system is solved iteratively by Newton’s method. All variables, even the 6, , 
n = I,..., N, are involved in the iterative process, so that the adjustment of the shock 
stand-off distance is made automatically by the Newton procedure. The criterion for 
convergence is that the norm of the residual, // H( W)il = maxj 1 Hj( W)l be less than 
some specified value. 

The accuracy in the solution can then be estimated from the correction in the last 
iteration. 

The initial approximation required to start the iterative method is obtained in the 
following way: 

1. The shock distance along the body is approximated. 

2. The values of u, v, h, and p behind the shock are calculated from the Rankine- 
Hugoniot conditions using free stream values and the approximation of tan /3 described 
above. 

3. In the interior the values of U, h, and p are held constant between the shock 
and the body, while u is interpolated linearly between the shock value and the zero 
value at the body. 

The initial approximation of the shock distance used is the one given by Berman in 
[l], where an analytical expression for the shock distance is given, which involves 
only the density ratio p,/p across the shock at the symmetry line. 

If a calculation on a coarse mesh has been performed, and we want a calculation 
made on a finer mesh, then the initial data for the Newton iteration are obtained by 
linear interpolation from the solution on the coarser mesh. 

The Linear System of Equations 

The Newton iteration procedure used for solving the nonlinear system of equations 
(3.1) requires the solution of a system of linear equations for every iteration. The 
major part of the computing time is spent on these calculations, and the storage 
requirements for this part tend to grow rapidly when the mesh is refined. 
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With the ordering of the unknown and of the equations introduced above. the 
Jacobian of the nonlinear system (3.1) has the structure 

A, 4 
G A, 4 

. BJ-1 
CJ AJ 

c J+l 

(3.2) 

This is a sparse matrix, the main part of which is block tridiagonal, However, since 
the coefficients of the equations are functions of 6 and of tan p, there are also nonzero 
elements in the last N columns. 

The matrices Aj contain three block diagonals with 4 x 4 matrices, while Bj , Cj 
have only one such diagonal. (Due to the boundary approximation A, , B, , and C,,, 
have a somewhat different structure. 

The linear system of equations is solved by Gaussian elimination, using row 
pivoting. The equations are scaled so that the largest elements in all rows are of the 
same magnitude. The scaling factors are always chosen to be a power of the machine 
radix, (IBM machines have 16 as radix) so that no round-off error should be caused by 
the scaling; this type of scaling is recommended by Forsythe and Moler [4]. 

The method used for the Gaussian elimination is based on algorithms for factoriza- 
tion of band matrices given by Martin and Wilkinson [7], which do not use more 
storage than is needed for storing the band portion of the matrix plus some extra 
diagonals needed when pivoting is performed. However, when the mesh is refined, 
the storage requirements still grow rapidly, For example, 8 times more storage is 
needed when the step size in each direction is halved. Therefore we have used the 
method used by Blomster and Skollermo in the transsonic nozzle flow problem [2], 
where only a small part of the band portion of the matrix is kept in the main 
storage at any given time. External storage is then used for the rest of the matrix. 
This method was modified to suit the special format of matrix (3.2) and to perform 
row pivoting. A system with the same coefficient matrix and a new right-hand side 
could be solved rapidly by reading the stored LU-decomposition of the matrix from 
external storage and performing the back substitutions. This procedure is used for the 
quasi-Newton’s method, where the same Jacobian is used for more than one iteration. 

The block diagonals of the system contain many zeros. For example, the average 
number of nonzero elements in a row is only 15, regardless of the mesh size. The time 
needed to solve the system depends very much on the rate of fill-in, i.e., the number 
of zero elements that become nonzero during the elimination procedure. There are 
pivoting strategies so that the fill-in is held at a minimum or reasonably near it, for 
example, those given by Tewarson [I 11. However, these are based on a rather detailed 
analysis of submatrices of the original matrix at several stages during the elimination 
process. We have compared three different procedures. 
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(a) The elimination is carried out as if all the elements within the band are 
nonzero. 

(b) At the elimination of thejth variable, the zeros in thejth column are taken 
into consideration. 

(c) As in (b) but the zeros of thejth row are also taken into consideration. 

For the 7 x 9 mesh with a total of 259 unknowns and bandwidth of 66, the opera- 
tion count is 

Method (a) 1140 . 103, 
Method (b) 540 . 103, 
Method (c) 260 . 103. 

The differences in efficiency shown by these numbers should be more pronounced for 
a finer mesh. 

Since the matrix (3.2) is very sparse, iterative solution methods could be considered. 
However, for the transsonic flow problem reported in [2], where the corresponding 
system has block tridiagonal form, several iterative methods were tried, but none of 
them was efficient compared to Gaussian elimination. Furthermore, in our case we 
have the additional difficulty with nonzero columns containing dr, d2 ,..., d,,, , and 
this is not likely to improve the convergence rate for iterative methods. 

4. THE MARCHING PROCEDURE IN REGION B 

Equation (2.22) for steady state can be written 

w, + Qw, + g = 0, (4.1) 

where 

Q= L-‘M 

a2 
----N 

6 
Ah 
u 

-(Ap + Bu) a2ct 

(Du - a’C/p) N \ 

g = L-lf = (-Da2-f;:Cu,p) N 
(- Da2p + a2Cu) N 

ua2p 
6 cY 

0 
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If u > a this system is hyperbolic, and a marching procedure can be used. We use the 
leap-frog scheme with a dissipation term; see, e.g., [3]. To comply with the usual 
notation for initial-value problems we substitute wnj by wjn, etc. The scheme is 

Wj n+1 = $1 - 2dS(QD,Wj” + gj”) - +ly)” (D+D-)” \l.;-‘, j =- 2, 3 ,..., J - 2, 
(4.2) 

,jn+1 = $1 - 2ds(QDowjn + gj”) - 4e(ily)’ D+D_w;-‘, j = I, J - I. (4.3) 

We have used l = 0.01 throughout the experiments. At the boundary y = 0 we use 
the boundary condition 

VO 
“X0 7 

and the variables U, p, h are computed by substituting Do by the second-order one- 
sided operator D+(Z - O.SdyD+) in (4.2) and putting e = 0. 

To explain the treatment of the boundary y = 1, we consider for a moment Eq. (4.1) 
written in conservation law form 

w, + F$(W) = 0, O,<j<S, (4.4) 

where 9 denotes the original unscaled coordinate, and where the components of Ware 
nonlinear combinations of U, U, h, p. The position 6 of the shock is determined by the 
Rankine-Hugoniot relations for (4.4) 

; [W] = -[F]. (4.5) 

Here [ ] denotes the jump across the shock. In our application, there are three negative 
and one positive eigenvalues of the Jacobian aF/2 Wjust inside the shock. 

In order to advance the scheme one step at the boundary, we must therefore use one 
extra boundary condition. By using Eq. (4.5), the five variables uy+‘, VT+‘, hy+‘, 
py+*, @+I then can be determined. 

In our setting, Eq. (4.5) is equivalent to (2.26), (2.27), and the difference scheme we 
get when the trapezoidal rule is used for (2.27) 

n+1 (a> UJ = V,[cos(8 + p+l) cos 8"" 

+ sin(0 + P,+l) sin /3n+1(2/11z,2 + y - l)/(r -t- I)], 
VL+1 (b) VJ = V,[cos(~9 + p+l) sin pndl 

- sin(B + /3n+l) cos p+1(2/n7,2 + y - I)/(r + I)], 

(4.6) Cc) PI;+l = pr + 2p, V,’ sin”(0 + /Y’) I y tl”;-’ , 

(d) hl;” = ypn+l ,“;:i”:,; ; ‘I) , 
3c 

sn+1 - 6” 
(e) f’s = f [tg /3”(1 + P?P) + tg p,+l( 1 + Kn+‘B”i ‘)I. 
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The computational procedure is: 

(1) Compute pJn+l by the extrapolation 

(2) Compate pn+l from Eq. (4.6~). 

(3) Compute u;+‘, z$+~, IS:+’ from (4.6a), (4.6b), (4.6d). 

(4) Compute P+l from (4.6e). 

The eigenvalues of Q are 

73.4 
((uA + $j2 + $ (+I- + gpg - Azjjl”j, 

where 74 corresponding to the minus sign is the positive eigenvalue at y = 1. 
Let W = (W(l), W@), Wf3), Wf4))T denote the characteristic variables such that the 

homogeneous system (4.1) with constant coefficients takes the form 

71 

w, + T2 t 1 73 
w, = 0, 

74 

where W = T-lw, T-lQT = diag(T, , r2, r3, -r4). 
After transformation conditions (4.6a), (4.6b), (4.6d) can be written 

which is the correct form for a well-posed problem. Wc4) at y = 1 is necessarily 
dependent on values computed inside the domain, since the corresponding charac- 
teristic is going out of the domain. p, which is extrapolated in our scheme, is the fourth 
component of TW, and therefore we must make sure that W(*) is included in the 
expression for p. In other words, the fourth component of the eigenvector 
corresponding to Tq must be nonzero. 

Assume that this is not the case, i.e., the eigenvector has the form x = (x1 , x1, 
x3, O)T. Then the second equation of the system 

(Q - 741) x = 0 (4.7) 
is 

(Ah/u - Tq) x2 = 0. 
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Since 
,rl = r2 = Ah/u # i-a 

x2 must be zero. But then the first equation of (4.7) implies x1 = 0, and finally the 
third equation implies x3 = 0. Therefore, we have proved that xq is nonzero. 

The implementation of the algorithm is as follows. 
The condition on the starting value s = sb is 

and the solutions obtained from method A at s = s,, are used as initial values. The 
first step is generated by using a forward difference in the s-direction. The initial step 
size is computed from 

which guarantees that the von Neumann condition for (4.2), (4.3) is satisfied for E of 
the order 0.01; see [3]. The largest possible step size is thus computed every kth step, 
where k = 5 is a typical value. The step size is increased, only if it can be doubled, 
otherwise the old one is used. If the step size must be decreased, it is halved. 

The variable step size is an important part of the algorithm, since close to the sonic 
line the eigenvalues 7 3 , 7q are large in magnitude. In the applications presented in this 
paper, the Mach number will increase with increasing s, i.e., 1 73 1, 1~~ 1 will get smaller. 
Therefore the step size need seldom be decreased. 

The reason for changing the step size only when it can be doubled is made clear by 
studying a simple model example. 

Consider the ordinary differential equation 

u, = iwu, 

which is obtained by Fourier transforming U, = u, . The leap-frog scheme is 

p+l = Un-l + 2hiv”, h = WAS, 

which has the solution 

where 
Vn = DIKln + UZKpn, 

K1 = ih + (1 - h2)‘i2, 

K2 = ih - (1 - h2)lj2. 

At a certain step the step size is changed to 

Aj: = (2 - a) As, O<a<l, 
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and the new solution is defined by 

where 
21 = (2 - cx) ih + (1 - (2 - cd)2 hy, 

iT2 = (2 - a) ih - (1 - (2 - 0)” /22)‘/2. 

The second part of 6” is the parasitic solution, which has an oscillating character, and 
therefore we want to keep 6, as small as possible. Assume that G = u”, and that Go is 
obtained by linear interpolation 

60 = IXF-1 + (1 - Lx) P-2, 

which corresponds to the new step size ds^ . 8, , 6, are determined by 

6, + 8, = N(OIKy-l + U2Ky-‘) + (1 - N)(CIIK;n-P + cJ~KT-~), 

iFlIT + lT26, = fJIKlrn + m u2K2 

and we get 

1 

CT2 = (c2 - itl)-l {U,K,“(1 - [O!K;l + (1 - cl) K;‘] cl) 

+ ‘T2K2m(l - [‘l!K;’ + (1 - O!) K,“] G1)). 

For small h-values we have 

-1 K1 = 1 - ih - T + O(h3), 

-2 Kl = 1 - 2ih - 2h2 + U(h3), 

-1 
K2 = 1 - ih + p + C(h3), 

hence 

” 1 
up = - - ulKlm 

2 I [( (2 - ‘+ - 4 ; 3a ) h2 + c(h’)] + UpKZm 
2 

Since q = U(l), (TV = O(h2), we get 

6, = O(h3) for 01 = 0, 
= O(h2) for (Y > 0. 

Therefore, the coefficient for the oscillating part is made as small as possible with the 
choice (Y = 0, i.e., when the step size is doubled. 
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5. NUMERICAL RESULTS 

The numerical method was programmed and run on the IBM 370/158 computer at 
the Uppsala University Computing Center. The solution is uniquely defined by the 
geometry of the body, the free stream Mach number J4, and by y. Two types of 
bodies have been studied; one half sphere, which could be followed by an afterbody, 
and one spherically capped cone. Three different Mach numbers have been used, 
M, = 2, 10,40. y = 1.4 is used for all cases. (see Figs. 3-6.) 

The same step size in the y-direction is used for both regions A and B. In the s- 
direction the step size required by the marching procedure in region B is in general 
smaller than the one used in region A. The solution in region B is therefore inter- 
polated to obtain the values at equally spaced points in the whole region. To get a 
continuous representation for graphical output, these values are finally interpolated 
using cubic splines. 
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I .6 

1 .a 

a.5 

0.4- 

a.2- 

8.8 I I I 
C 8.0 a.5 1 .B 8.8 0.6 I .a 

Y D Y 

FIG. 3. Result from half-sphere, Mach 2. (A) Shock shape and Mach lines, (B) pressure along 
body, (C) u-velocity at s = 1.57, (D) pressure at s = 1.57. 



STEADY FLOW ABOUT BLUNT BODIES 343 

a.e-4 I 

D 
8.8 8.5 1 .a 

Y 

FIG. 4. Result from half-sphere, Mach 10. (A) Shock shape and Mach lines, (B) pressure along 
body, (C) o-velocity at s = 1.57, (D) pressure at s = 1.57. 

The efficiency of the algorithm depends essentially on the convergence property of 
the Newton iterations. It turns out that the largest change in the solution occurs in the 
first iteration, and therefore the Jacobian is recomputed only once. In this way we have 
been able to obtain an accuracy of the order 1O-4 (more precise 11 H( IV)/1 w 10e4) in 
five iterations and still keep the total computing time low. 

We have run many more cases than those which are presented here. In all cases 
where the solution is such that it is possible to define the region A so that the whole 
subsonic region is included, convergence was obtained, and the whole computation 
procedure was behaved well as described above. (Actually we got convergence also in 
cases where the outflow boundary was partly subsonic.) In particular it is worth 
noting that the way of defining the initial data always gives a converging iteration 
process. In general the whole solution method seems to be very reliable. 

58 i/36/3-5 
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Fig. 5. Result from half-sphere, Mach 40. (A) Shock shape and Mach lines, (B) pressure along 
body, (C) r-velocity at s = 1.57, (D) pressure at s = 1.57. 

For each case the results are presented in four figures. The first shows the shock 
shape and lines of constant Mach number. The second shows the pressure along the 
body. The third and the fourth show the velocity components and the pressure at the 
outflow boundary. In all cases 17 mesh-points were used in the y-direction in both 
regions A and B. For Mach number 2, 11 mesh-points were used in the s-direction in 
region A; the corresponding number of mesh-pbints for Mach numbers 10 and 40’was 
10. The computing time for a half-sphere at M, = 10 was, for our computer, 

Newton procedure 116 set 
Marching procedure (85 steps) 17 set 

Total 133 set 
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FIG. 6. Result from spherically capped cone, half top angle 30”, Mach 10. (A) Shock shape and 
Mach lines, (B) pressure along body, (C) c-velocity at s = 1.65, (D) pressure at s = 1.65. 
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